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Steady inclined flows of granular-fluid mixtures
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We extend a recent theory for steady uniform gravity-driven flow of a highly
concentrated granular-fluid mixture over an erodible bed between frictional sidewalls.
We first include angles of inclination greater than the angle of repose of the particles;
then, we introduce a boundary condition for flow over a rigid bumpy bed. We
compare the predictions of the resulting theory with the volume flow rates, depths
and angles of inclination measured in the experiments on dry and variously saturated
flows over rigid and erodible boundaries. Finally, we employ the resulting theory,
with the assumption that the flow is shallow, to solve, in an approximate way, for the
variation of height and average velocities along a steady non-uniform inclined flow
of a granular-fluid mixture that moves over a rigid bumpy bed. The solutions exhibit
features of the flow seen in the experiments – for example, a dry bulbous snout in
advance of the fluid, whose length increases with increasing number of the particles
and that disappears with increasing velocity – for which satisfactory explanations
were lacking.

Key words: granular media, particle/fluid flows, shallow water flows

1. Introduction
Granular-fluid mixtures driven down a slope by gravity are of great interest in

industrial and civil engineering applications. Among the latter, debris flows are
probably the best known examples (Takahashi 1991), although a complete physically
based mathematical description of such phenomena is still developing (Iverson 1997).
Because of the great variety of physical mechanisms involved, the mathematical
modelling of highly concentrated mixtures of fluid and granular matter presents a
challenge. For example, even in the extremely idealized case of a steady uniform flow
of a mixture of a Newtonian fluid and mono-dispersed particles in a rectangular
channel, as in the recent laboratory experiments of Armanini et al. (2005) and
Larcher et al. (2007), inter-particle collisions (e.g. Goldhirsch 2003; Jenkins 2007)
and friction (Johnson & Jackson 1987), buoyancy and drag (Iverson 1997) and the
influence of boundaries at the bottom (Jenkins & Askari 1991; Jenkins 2001) and the
sides (Jop, Forterre & Pouliquen 2005) must be considered. Natural debris flows are
also characterized by unsteadiness and non-uniformity (e.g. Davies 1988, 1990), and
typically develop through series of surges (Iverson 1997); with complicating factors
such as non-hydrostatic pressure (Iverson 1997) and longitudinal variation of particle
concentration (Hungr 2000) influencing their behaviour.

† Email address for correspondence: diego.berzi@polimi.it
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Recently, Berzi & Jenkins (2008a ,b) proposed a simple theory based on a linear
rheology for the particle interactions, turbulent shearing of the fluid, buoyancy
and drag. They provided a complete analytical description of the steady uniform
flow of a granular-fluid mixture over an erodible bed contained between frictional
sidewalls. In order to obtain such analytical solution, they assumed a constant
concentration in the particle-fluid layer (that could be considered as the first step in an
iterative procedure for the concentration distribution, Berzi & Jenkins 2008a) and the
similarity of the particle and fluid velocity profiles. The predictions of this analytical
description compared favourably with the measurements in experiments on steady
uniform granular-fluid flows by Armanini et al. (2005) and Larcher et al. (2007). As
experimentally observed, the particle and fluid velocity distributions, the flow depths
and the free surface inclination were completely determined by the particle and fluid
volume fluxes. This is a unique feature of the theory; it is a consequence of the
particle rheology and the incorporation of the sidewalls forces. As for a dry granular
flow between frictional sidewalls (Jop et al. 2005), they characterized the erodible bed
through a fixed value of the ratio of normal to shear stress (or, equivalently, of the
concentration). This gives a relation between particle and fluid depths and angle of
inclination of the bed that cannot be obtained if a particle rheology characterized
by a constant value of the stress ratio is used (Bagnold 1954; Savage & Hutter
1989; Iverson 1997; Chen & Ling 1998). Actually, Takahashi (1991) improved the
Bagnold rheology by using a stress ratio dependent on the concentration. However,
he did not provide a criterion to define the position of the erodible bed, and his
expression does not reproduce the results of numerical simulations (da Cruz et al.
2005; Mitarai & Nakanishi 2007) on dry granular flows. Ancey (2007) places these
and other viscoplastic constitutive relations, including that employed here, in the
context of regimes exhibited by geophysical flows, including debris flows.

Here, we wish to extend the theory of Berzi & Jenkins (2008a ,b) to steady uniform
gravity-driven granular-fluid flows at angles of inclination of the free surface greater
than the angle of repose of the particles and to incorporate the possibility of flow
over a bed that is rigid and bumpy, rather than erodible. As will be shown, this
will permit us to reproduce, quantitatively and qualitatively, the relations between
flow rates, depths and inclinations measured in experiments on both dry granular
and granular-fluid flows. Furthermore, we will apply our analytical relations between
the particle and fluid volume fluxes, the particle and fluid depths and the angle of
inclination of the free surface in a steady uniform flow to solve, in an approximate
depth-averaged way, the motion of a steady non-uniform granular-fluid wave over a
rigid bumpy bed, experimentally investigated by Davies (1988). In this steady flow, we
to neglect any non-hydrostatic pressure effects (Iverson 1997) that are associated with
the non-uniformity. We will show that the theory can reproduce the main qualitative
features of those flows. In particular, the often observed bulbous shape of those waves
naturally results as a consequence of the non-uniformity in the flow depths, without
making use of an artificially imposed non-uniformity in the particle concentration
(Hungr 2000).

The paper is organized as follows: in § 2, we outline the previous theoretical
treatment for steady uniform flows and extend it to arbitrary angles of inclinations
and to flows over a rigid bumpy bed. In the same section, we derive the governing
equations of a steady non-uniform flow over a rigid bumpy bed. In § 3, we compare
the predictions of the theory with the results of experiments performed on steady
uniform dry granular flows (Pouliquen 1999b; Taberlet et al. 2003; Jop et al. 2005)
and steady uniform (Tubino & Lanzoni 1993; Armanini et al. 2005) and non-uniform
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Figure 1. Sketch of steady (a) over-saturated and (b) under-saturated uniform flows over
erodible or rigid bumpy beds. Also shown are typical velocity profiles for the particles in the
two configurations.

(Davies 1988) granular-fluid flows. Finally, in § 4, we make some concluding
remarks.

2. Theoretical framework
In this section, we first briefly summarize the analysis of steady uniform flows

performed in Berzi & Jenkins (2008a ,b) and extend it to flows over an erodible bed
at values of the angle of inclination greater than the angle of repose and to flows
over a rigid bumpy bed. Then, we apply the theory to the propagation of a steady
granular-fluid wave along an inclined rigid bumpy bed experimentally investigated
by Davies (1988).

We let ρ denote the fluid mass density, c the particle concentration, g the
gravitational acceleration, W the channel width, σ the ratio of particle to fluid
density, d the particle diameter, η the fluid viscosity, U the fluid and u the particle
velocity in the flow direction. The Reynolds number R ≡ ρd(gd)1/2/η characterizes
the fall velocity of the particles. In what follows, we phrase the momentum balances
and constitutive relations in terms of dimensionless variables, with lengths made
dimensionless by d , velocities by (gd)1/2 and stresses by ρσgd .

2.1. Steady uniform flow

We take z = 0 to be the top of the grains, z = h to be the position of either the
erodible or the rigid bed and H to be the height of the fluid above a bed of inclination
φ. The inclination of the free surface is θ; it coincides with φ in a steady uniform
flow. The degree of saturation, ξ = H/h is greater than unity in the over-saturated
case and less than unity in the under-saturated. Sketches of over- and under-saturated
flows are depicted in figure 1, together with a generic velocity profile for the particles.
In under-saturated flows, when the angle of inclination of the bed is greater than
the angle of repose, a layer of thickness ψ at the top of the grains can experience
shearing, above a granular plug in the region ψ � z � ζ below it (figure 1b).

We assume that an algebraic relation between the particle shear stress and the
granular temperature holds, so that it is possible to apply the rheology proposed
by the French group GDR MiDi (2004). Numerical simulations (Silbert et al. 2001;
Mitarai & Nakanishi 2005) and theory (Jenkins 2006, 2007) indicate that this is true
in regions more than 10 particle diameters away from the boundaries. Hence, we
expect our theory to apply only to thick dense flows.
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This rheology provides the particle stress ratio μ ≡ s/p and the concentration
c as unique functions of the inertial parameter I ≡ |γ̇ |/(p/c)1/2, where s is the particle
shear stress, p is the particle pressure and γ̇ is the strain rate. In this case, |γ̇ | = −u′;
where here and in what follows, a prime indicates a derivative with respect to z. The
inertial parameter given above represents the ratio between the time scales associated
with motion perpendicular and parallel to the flow, respectively, with the former
given by the time of free-fall of a particle when the influence of the interstitial fluid
is negligible. Cassar, Nicolas & Pouliquen (2005) have suggested that when the time
scale associated with the viscous drag force is much smaller than the time scale
associated with a free-fall motion, that is, when the Stokes number (St = Rσγ /̇18) is
much smaller than 1, the former should be substituted for the latter in the definition
of the inertial number. Hence, our analysis is limited to flows characterized by Stokes
numbers greater than 1. In the experiments performed by Armanini et al. (2005) the
Stokes number in the flow is everywhere greater than 1, except that in a thin layer
close to the erodible bed.

We consider highly concentrated flows, in which the aforementioned functions are
approximately linear (da Cruz et al. 2005):

μ = μ̌ + χI (2.1)

and

c = ĉ − bI, (2.2)

where μ̌ and ĉ are the minimum stress ratio and the maximum concentration,
respectively, and χ and b are material coefficients. The quantities μ̌ and ĉ characterize
the erodible bed, at which I = 0; μ̌ is the tangent of the angle of repose and ĉ is
the concentration at dense random packing. We expect (2.1) and (2.2) be valid up to
a minimum concentration č for which the flow can still be considered dense. It has
been suggested (Jenkins 2007) that a granular flow is dense when there are correlated
motions between the particles; for spheres, this would correspond to concentrations
in the range 0.5–0.6, approximately. Upon combining (2.1) and (2.2), we determine
the stress ratio μ̂ = μ̌ + χ(ĉ − č)/b that corresponds to the minimum concentration
č. We will show in the following how this largest value of the stress ratio limits the
applicability of the present theory.

In order to treat the under-saturated and over-saturated flows in a unified way,
Berzi & Jenkins (2008a) introduced two auxiliary functions of the degree of saturation
ξ :

α ≡ 1 +
1

2
(ξ − 1 − |ξ − 1|) (2.3)

and

β ≡ 1 +
1

2
(ξ − 1 + |ξ − 1|). (2.4)

In an under-saturated flow, ξ < 1, α = ξ and β = 1; while, in an over-saturated flow,
ξ > 1, α = 1 and β = ξ .

The balances of fluid momentum normal and parallel to the flow in the region
(1 − α)h � z � h, in which both phases are present, are

P ′ =
1

σ
cos θ (2.5)
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and

S ′ = (1 − c)
1

σ
sin θ − c

σ
C(U − u), (2.6)

respectively, where P is the fluid pressure, S is the fluid shear stress and C is the
dimensionless drag:

C =
1

(1 − c)3.1

(
3

10
|U − u| +

18.3

R

)
. (2.7)

We employ here the expression of the dimensionless drag derived by Dallavalle (1943),
with the concentration dependence suggested by Richardson & Zaki (1954). When
an upper clear fluid layer is present, the distribution of the fluid shear stress can be
obtained from (2.6) with c = 0. In (2.6), we ignore the fluid drag at the walls which
could play a significant role for flows in narrow channels (less than 10 diameters wide,
Richard et al. 2009).

The balances of particle momentum normal and parallel to the flow, for (1 − α)h �
z � h, are

p′ =

(
1 − 1

σ

)
c cos θ (2.8)

and

s ′ = c sin θ +
c

σ
C(U − u) − 2

μw

W
p, (2.9)

respectively, where p is the particle effective pressure (total pressure minus the pore
pressure), s is the particle shear stress and the presence of the sidewalls is incorporated
in an average way through their coefficient μw of sliding friction. The balances for
the particles when an upper dry layer is present can be obtained from (2.8) and (2.9)
by letting σ become infinite.

In the mixture, (1 − α)h � z � h, Berzi & Jenkins (2008a ,b) employed a simple
constitutive relation for the fluid shear stress with a constant mixing length equal to
kh:

S = −1 − c

σ
k2h2|U ′|U ′, (2.10)

where k = 0.20 (one-half Kármán’s constant). In the upper clear fluid layer, the
constitutive relation for the fluid shear stress was again given by (2.10), with c = 0.
Equation (2.10) implies that large-scale turbulence develops in the flow. However, it
has been suggested (Bagnold 1954) that the presence of the particles suppresses this
large-scale turbulence, leaving only small-scale turbulence, with a mixing length of the
order of the mean distance between the particles – roughly, one-tenth of a diameter.
In this case, the turbulent fluid shear stress is given by

S = −1 − c

100σ
|U ′|U ′; (2.11)

while in the upper clear fluid layer, we assume that the mixing length is proportional
to the depth of the layer:

S = −1 − c

σ
k2(H − h)2|U ′|U ′. (2.12)

The choice of the large- or small-scale turbulence expression influences the material
parameter χ in the rheology (2.1), which has to be evaluated through fitting with
experiments. Cassar et al. (2005) have provided some indication of when the material
coefficients in the rheology (2.1) and (2.2) are the same with or without an interstitial
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fluid. Therefore, experimental data of the same granular material in dry and wet
configurations could permit the determination of whether (2.10) or (2.11) is a suitable
expression for the fluid shear stress. Such data is available for the glass spheres,
used by Pouliquen (1999b), Jop et al. (2005) and Tubino & Lanzoni (1993), but,
unfortunately, not for the plastic cylinders used by Armanini et al. (2005). It is likely,
however, that the scale of the turbulence is determined by the ratio σ of particle
density to the fluid density, that is, by the ratio of the particle inertia to the fluid
inertia. For glass spheres in water, σ is almost twice that for plastic cylinders in
water. Consequently, for the latter, we will make use of (2.10), as do Berzi & Jenkins
(2008a ,b). Comparisons with experiments performed on glass spheres shows, however,
that the choice of the scale of the turbulence does not affect the results, provided that
the ratio between the particle and fluid volume fluxes is not small (see § 3). We make
two further approximations. First, we assume that the concentration is approximately
constant and at its maximum value, c = ĉ. This assumption should be regarded as the
first step in an iterative process, even though the analysis on the saturated flow over
an erodible bed (Berzi & Jenkins 2008a) shows that it is a reasonable approximation.
Moreover, given that we limit the analysis to dense flows, where, as already stated,
the concentration is within a relatively small range, this assumption seems plausible.
Second, because the drag coefficient (2.7) is high at high concentrations, it is likely
that the difference between the local particle and fluid velocity is small and, therefore,
the velocity distributions are similar; so we assume that u′ = U ′.

With these assumptions, it is possible to obtain the distribution of the particle stress
ratio μ from the momentum balances (2.5), (2.6), (2.8) and (2.9) (for more details, see
Berzi & Jenkins 2008b):

μ =
σz + (1 − ĉ)[z − h(1 − α)]/ĉ

σz − z + h(1 − α)
tan θ +

σS∗

[σz − z + h(1 − α)]ĉ cos θ

− DI 2 − B
σz2 − [z − h(1 − α)]2

σz − z + h(1 − α)
, (2.13)

where, when the flow is over-saturated, S∗ is the fluid shear stress at the top of the
particles. Its expression, and those of the coefficients D and B , is given in table 1.
Equation (2.13) provides an illustration of the different physical mechanisms acting
on the particles. The stress ratio can be seen as a measure of the mobility of the
particles. The mobility of the particles is increased by the presence of the interstitial
fluid, because the component of the weight in the direction parallel to the flow (the
numerator in the first term on the right-hand side of (2.13)) increases and, due to
buoyancy, the component of the weight in the direction perpendicular to the flow
(the denominator of the terms on the right-hand side of (2.13)) decreases. The shear
stress associated with a layer of clear fluid above the mixture (the second term on the
right-hand side of (2.13)) provides additional mobility to the particles. With turbulent
shear in the fluid (the third term on the right-hand side of (2.13)) the mobility of the
particles is decreased, because less than the entire component of the fluid weight in
the direction of flow contributes to the drag on the particles. Finally, the presence of
frictional sidewalls (the fourth term on the right-hand side of (2.13)) decreases the
mobility of the particles.

Using the linear rheology (2.1) in (2.12), we obtain a quadratic equation that is
possible to solve for I as a function of z. Once this distribution is known, it is possible
to derive the variation of μ with z, given in table 1, and the distribution of the particle
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μ = μ̌ + χ{−χ/2D + (BD)1/2(−z2 + 2Fz + N )1/2/[D(z + L)1/2]}
u′ = χ [(1 − 1/σ ) cos θ ]1/2(z + L)1/2/2D − [B(1 − 1/σ ) cos θ/D]1/2(−z2 + 2Fz + N )1/2

A = [σ + (1 − ĉ)/ĉ] tan θ/(σ − 1) − μ̌

B = μw/W

D = k2h2ξ 2(1 − ĉ)/(σ ĉ) (large-scale turbulence) or

D = (1 − ĉ)/(100σ ĉ) (small-scale turbulence)

F = (χ 2 + 4AD)/(8BD) − L

L = h(1 − α)/(σ − 1)

N = L
[
χ 2/(4D) − (1 − ĉ) tan θ/ĉ − μ̌ + BL(σ − 1)

]
/B + σS∗/ [(σ − 1)Bĉ cos θ ]

S∗ = h sin θ (β − 1)/σ

ζ = −[χ 2/(4BD) − 2F ]/2 − {[χ 2/(4BD) − 2F ]2 − 4[χ 2L/(4BD) − N ]}1/2/2

um = ub − χ [(1 − 1/σ ) cos θ ]1/2
{

(h + L)3/2(h − ζ ) − 2
5
[(h + L)5/2 − (ζ + L)5/2]

}/
[3D(h − ζ )]

+ [BD(1 − 1/σ ) cos θ ]1/2
{

(h − F )(2Fh − h2 + N )1/2

+ (F 2 + N ) sin−1[(h − F )/(F 2 + N )1/2]
}/

(2D)

− [BD(1 − 1/σ ) cos θ ]1/2
{

− 1
3
(2Fh − h2 + N )3/2 + 1

3
(2Fζ − ζ 2 + N )3/2

+ (F 2 + N )3/2
[
(h − F ) sin−1

(
(h − F )/(F 2 + N )1/2

)/
(F 2 + N )1/2

− (ζ − F ) sin−1
(
(ζ − F )/(F 2 + N )1/2

)/
(F 2 + N )1/2

+ (1 − (h − F )2/(F 2 + N ))1/2 − (1 − (ζ − F )2/(F 2 + N ))1/2
]}/

[2D two-dimensional(h − ζ )]

up = ub − χ [(1 − 1/σ ) cos θ ]1/2
[
(h + L)3/2 − (ζ + L)3/2

]/
(3D)

− [BD(1 − 1/σ ) cos θ ]1/2
{

(ζ − F )(2Fζ − ζ 2 + N )1/2

+ (F 2 + N ) sin−1
[
(ζ − F )/(F 2 + N )1/2

]}/
(2D)

+ [BD(1 − 1/σ ) cos θ ]1/2
{

(h − F )(2Fh − h2 + N )1/2

+ (F 2 + N ) sin−1
[
(h − F )/(F 2 + N )1/2

]}/
(2D)

Um = um + δu

Up = up + δu

Ucm= Up + 2(h sin θ )1/2(β − 1)3/2/(5kβ) (large-scale turbulence) or

Ucm= Up + 2(h sin θ )1/2(β − 1)1/2/(5k) (small-scale turbulence)

Table 1. Summary of the results for steady uniform flows between frictional sidewalls.

shear rate in the flowing layer. Given the definition of the inertial parameter and the
constitutive relations, we may also calculate the location ζ of the base of the plug,
the value of the particle velocity up there and the mean value um of the particle
velocity in the flowing layer (ζ � z � h). All of these results are reported in table 1.
In the following, we extend these relations in order to take into account the possible
presence of an upper dry sheared layer above the plug and a non-zero slip velocity
ub at a rigid base.

With u′ = U ′, the difference between the value of the fluid velocity Up at z = ζ

and the mean value Um of the fluid velocity in the flowing layer (ζ � z � h) and the
corresponding values for the particles is constant. However, this implies that the fluid
would slip over the rigid bed. Consequently, we regard the theory to apply everywhere
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μ = μ̌ + χ
{

−χ/2D + (2Fz + N )1/2/[D(z + L)]1/2
}

u′ = χ [(1 − 1/σ ) cos θ ]1/2 (z + L)1/2/2D − [(1 − 1/σ ) cos θ/D]1/2(2Fz + N )1/2

F = (χ 2 + 4AD)/(8D)

N = L
[
χ 2/(4D) − (1 − ĉ) tan θ/ĉ − μ̌

]
+ σS∗/ [(σ − 1)ĉ cos θ ]

ζ = (4DN − χ 2L)/(χ 2 − 8DF )

um= ub − χ [(1 − 1/σ ) cos θ ]1/2
{

(h + L)3/2(h − ζ )

− 2
5

[
(h + L)5/2 − (ζ + L)5/2

]}/
[3D(h − ζ )]

− [(1 − 1/σ ) cos θ ]1/2
[
(2Fh + N )5/2 − (2Fζ + N )5/2

− 5F (2Fh + N )3/2(h − ζ )
]/[

15D1/2F 2(h − ζ )
]

up= ub − χ [(1 − 1/σ ) cos θ ]1/2
[
(h + L)3/2 − (ζ + L)3/2

]/
(3D)

− [(1 − 1/σ ) cos θ ]1/2
[
(2Fζ + N )3/2 − (2Fh + N )3/2

]/
(3FD1/2)

Table 2. Summary of the results for steady uniform flows without sidewalls. Only expressions
different from those of table 1 are shown.

except in a boundary layer close to the rigid bed, where the fluid velocity goes to
zero and the particle velocity goes to a finite non-zero value. In order to evaluate the
constant difference δu between the fluid and the particle velocity above this boundary
layer, we make use of the balance (2.6) at its top, z ≈ h:

ĉ

σ (1 − ĉ)3.1

(
3

10
|δu| +

18.3

R

)
δu = �, (2.14)

where � = (1 − ĉ) sin θ/σ − S ′(h) is the difference between the component of the fluid
weight in the direction parallel to the flow and the internal resistance due to the fluid
shear stress, evaluated at z ≈ h. The quantity S ′(h) can easily be obtained from the
constitutive relation (2.10) or (2.12), given the distribution of U ′ = u′ along z (see
table 1). Depending on whether � is positive or negative, the fluid is either faster or
slower than the particles. For flow over an erodible bed, we have assumed (Berzi &
Jenkins 2008a ,b) that the fluid shear stress at its surface is zero. Then, (2.14) reduces
to the classical equation governing flows through a porous bed (de Marsily 1981) and
the fluid is always faster than the particles. The general solution of (2.14) is

δu =

⎧⎨
⎩− 18.3

0.6R
+

1

2

[(
18.3

0.3R

)2

+
4σ (1 − ĉ)3.1|�|

0.3ĉ

]1/2
⎫⎬
⎭ �

|�| . (2.15)

The value of the mean velocity Ucm in the upper clear fluid layer, h(1 − β) � z � 0,
present only in the over-saturated case, can also be evaluated using (2.10) or (2.12) in
(2.6), upon taking c = 0 and integrating twice. The result, already given in Berzi &
Jenkins (2008b) for the case of large-scale turbulence, is also reported in table 1.

In table 2 we provide the corresponding results for a channel of infinite width, that
is, for a channel with no sidewalls. The results for this case can not be obtained in
general by simply taking μw = 0 in the expressions of table 1, because the coefficient
B that contains the wall friction coefficient multiplies the highest power of z in (2.13)
(see the Appendix A for more details).
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2.2. Upper dry shear layer

In the upper dry layer of an under-saturated flow, the ratio of shear stress to pressure
is, with the assumption of constant concentration,

μ = tan θ − μw

W
z, (2.16)

as in the case of a dry granular flow between frictional sidewalls investigated by Jop
et al. (2005). The stress ratio μ is proportional to the inertial parameter and it must
exceeds its minimum value μ̌ to have a non-zero I . If tan θ < μ̌, then, for 0 � z � ζ ,
the shear rate is zero (a plug); if, instead, tan θ > μ̌, then a part of the dry layer
of thickness h(1 − α) is subject to shearing. Upon taking μ = μ̌ in (2.16), we can
determine the thickness ψ of this shear layer:

ψ = min [(tan θ − μ̌) W/μw, h(1 − α)] . (2.17)

Equation (2.17) accounts for the fact that the thickness ψ must be, at most, equal to
the total extent of the dry layer. In the dry shear layer, 0 � z � ψ , we can employ the
linear rheology (2.1) in (2.16), the definition of the inertial parameter and the pressure
distribution p = ĉz cos θ (from (2.8), with the density ratio σ infinite) to obtain

u′ = − (cos θ)1/2

χ

[
(tan θ − μ̌)z1/2 − μw

W
z3/2

]
. (2.18)

Upon integrating twice between 0 and ψ and using the boundary condition u(ψ) = up ,
we obtain the mean value of the particle velocity in the dry shear layer:

uψ =
(cos θ)1/2

χ
ψ3/2

[
2

5
(tan θ − μ̌) − 2

7
μwψ/W

]
+ up. (2.19)

This expression includes dry granular flow as a special case.

2.3. Slip velocity at the base

We next extend the theory to accommodate a non-zero slip velocity ub at a rigid
bumpy bed. We assume that the inertia of the particles is great enough so that the
presence of the fluid does not affect the particle interactions. Then, we can make
use of previous work on boundary conditions for dry collisional granular flows over
a rigid bumpy base (Richman 1988; Jenkins 2001). The main result is that at the
boundary there is a relation between the value of the particle stress ratio μb and the
quantity ub/(pb/cb)

1/2, where pb and cb are the particle pressure and concentration at
the boundary. This relation can be interpreted as the rheology of the boundary. The
term ub/(pb/cb)

1/2 is the inertial number at the bed, with the role of the shear rate
taken by the ratio of the slip velocity to the particle diameter.

Upon taking z = h, we may obtain, from the distribution of μ in table 1 or table 2,
the value of the particle stress ratio at the bed:

μb = μ(h). (2.20)

If the flow is over an erodible bed, μb = μ̌, and (2.20) provides a relation between
the height of the particles and the inclination of the bed.

Finally, we assume here that the stress ratio at the bed can be expressed as

μb = μ̌ + χ
ub

(1 − α/σ )1/2(h cos θ)1/2
, (2.21)

where we have taken cb = ĉ and pb = (1 − α/σ )hĉ cos θ . Boundary conditions derived
using arguments from the kinetic theory for rigid flat walls to which frictional spheres
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have been attached have this form (Jenkins 2001). Here, rather than adopting the
coefficients calculated using kinetic theories, we assume that the coefficients are the
same as those of (2.1). In this case, (2.21) provides continuity with the solution over
an erodible bed (Berzi & Jenkins 2008b), given that when μb = μ̌, the slip velocity is
equal to zero.

We can now evaluate the volume flux of particles per unit width,

q = ĉum(h − ζ ) + ĉup(ζ − ψ) + ĉuψψ, (2.22)

and the volume flux of fluid per unit width,

Q = (1 − ĉ)Um(h − ζ ) + (1 − ĉ)Up [ζ − h(1 − α)] + Ucmh(β − 1), (2.23)

or, equivalently, the average particle velocity

uA =
q

ĉh
(2.24)

and the average fluid velocity

UA =
Q

h [β − 1 + α(1 − ĉ)]
. (2.25)

In conclusion, the four governing equations (2.20)–(2.23) constrain seven variables q ,
Q, ub, h, ξ , μb and θ . That is, there are three degrees of freedom for a steady fully
developed flow of a granular-fluid mixture over a rigid bed. For example, we can
specify the particle and fluid volume fluxes and the angle of inclination of the rigid
bed, and determine the remaining variables from the governing equations. For a flow
over an erodible bed, we have the additional condition μb = μ̌, so that there are only
two degrees of freedom. Once the particle and fluid volume fluxes are specified, the
angle of inclination of the erodible bed, equal to that of the free surface, is determined
as part of the solution. Alternatively, we could specify the average velocity uA (or
UA), h and ξ and obtain the remaining variables, in particular the angle of inclination
θ , from the governing equations. We will use this approach to deal with steady
non-uniform flows.

2.4. Limitations of the theory

We expect the theory to describe steady uniform thick dense flows of a granular-fluid
mixture in relatively wide rectangular channels with frictional sidewalls in which the
Stokes number in most of the flow exceeds unity. As already stated, a thickness of at
least 10 particle diameters is required to disregard the influence of boundaries. For
thick flows, this prevents the prediction of realistic concentration distribution close
to the free surface and the bed. For flows of, roughly, 15 particle diameters and less
in width, we anticipate that fluid forces associated with shearing across the flow, due
to the no-slip condition at the sidewalls, become important. The limitation on the
Stokes number is required because we use a definition of the inertial parameter valid
when the time scale associated with free-fall motion of particles is much shorter than
the time scale associated with the viscous drag (Cassar et al. 2005).

The limitation to dense flows, for which we expect rheology (2.1) be valid, deserves
additional consideration. As already stated, the rheology of (2.1) and (2.2) provides
ranges for the inertial parameter (0 � I � Î ) and for the stress ratio (μ̌ � μ � μ̂),
given a range of concentration (č � c � ĉ) for the flows that we consider as dense,
that is, those for which correlated motion between the particles is present (Jenkins
2006, 2007). Actually, the minimum value of I , corresponding to the minimum value
of the stress ratio at the interface with an erodible bed or a plug, would not be
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exactly zero, because the bed creeps (Komatsu et al. 2001). However, the creeping
flow is so slow that it makes a negligible contribution to the volume flux on the
usual time scale of laboratory experiments; so we do not expect this approximation
have a large influence on the predictions. Quantitative evaluation of the range of the
parameters I , μ and c requires knowledge of the material coefficients in the particle
rheology. The range of parameters for the granular material used by Armanini et al.
(2005) and Larcher et al. (2007) in their experiments, to which the present theory
has been compared in Berzi & Jenkins (2008a ,b), will be provided in the following
section. However, as an example, in the numerical simulations performed by Mitarai
& Nakanishi (2007) on simple shear flow of frictionless spheres, over the range of
concentration 0.5 � c � 0.6, the range of particle stress ratio was 0.30 � μ � 0.53.

Once the upper limit of the stress ratio μ̂ is known, we can use this information
to bound the analytical solutions for dense flows. For a flow between frictional
sidewalls, we have determined the distribution of the stress ratio with z. In the upper
dry granular layer it is given by (2.16); and, for ζ � z � h, is reported in table 1. This
distribution is characterized by a maximum at z = 0. This maximum is infinite for an
over-saturated flow, because the particle pressure is zero and the particle shear stress
is finite, because of the shear stress exerted on the particles by the clear fluid above.
Consequently, the theory can describe an over-saturated flow, except for a boundary
layer at the interface with the clear fluid. To include over-saturated flows, we assume
that in any kind of flow, the maximum value μM of the stress ratio occurs at z = 1.
That is, the maximum stress ratio in the flow is below the first layer of particles and
can be evaluated from the distribution of μ reported in table 1.

When the upper dry layer is entirely sheared in an under-saturated flow, μM is,
therefore, equal to tan θ −μw/W (from 2.16), otherwise there is also a local maximum
for μ in the region ζ � z � h, whose position can be determined from dμ/dz = 0
with μ(z) given in table 1. The implication is that the theory applies when the tangent
of the angle of inclination of the free-surface is less than μ̂+μw/W . We will see in the
next section that, given a fixed volume flux of fluid, this corresponds to a maximum
volume flux of particles (or equivalently to a minimum degree of saturation ξ ). On
the other hand, we will also see that, given the same volume flux of fluid, the upper
limit of μ in an over-saturated flow implies a minimum volume flux of particles (or
equivalently, a maximum degree of saturation) for having a dense flow.

2.5. Steady non-uniform flow

We now extend the analysis outlined in the previous sections to describe the
propagation of a steady wave of a granular-fluid mixture over a rigid bumpy bed.
This particular flow configuration has been experimentally investigated by Davies
(1988) and seems to possess some features in common with natural debris flows.
Consequently, it represents a realistic test of the present theory for its possible
practical applications.

A sketch of the flow configuration with the frame of reference is depicted in figure 2.
In contrast to figure 1, the origin of the z-axis is at the rigid bed and the coordinate Z

increases towards the free surface. The origin of the x-axis is taken to be somewhere
upslope. Both the particle and the fluid depth are functions of x, with x∗ and X∗

indicating the position of the particle and fluid snout, respectively. At each value of
x, the ratio H/h can be greater than, equal to, or less than unity (over-, fully and
under-saturated flow); also, either h or H can vanish (clear fluid or dry granular
flow).In the following, we focus on the governing equations for the part of the wave
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h(x)H(x)
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x

Figure 2. Frame of reference used for the analysis of a steady non-uniform flow over a rigid
bumpy bed.

in which both particles and fluid are present, x <min(x∗, X∗), and defer the analysis
of the front to the next subsection.

The longitudinal momentum balance for the fluid is

1

σ

dU

dt
=

1

σ
sinφ +

∂S

∂Z
− ∂P

∂x
, (2.26)

if h � Z � βh, or

1 − c

σ

dU

dt
=

1 − c

σ
sinφ − c

σ
C(U − u) +

∂S

∂Z
− ∂(1 − c)P

∂x
− P

∂c

∂x
, (2.27)

if 0 � Z � αh, where we recall that when ξ ≡ H/h � 1, α = ξ and β = 1, and the
term involving the gradient of concentration along the flow accounts for the buoyancy
of the particles in the way suggested by Drew & Passman (1999). The longitudinal
momentum balance for the particles is:

c
du

dt
= c sinφ − 2

μw

W
p +

∂s

∂Z
− ∂p

∂x
, (2.28)

if αh � Z � h, or

c
du

dt
= c sinφ +

c

σ
C(U − u) − 2

μw

W
p +

∂s

∂Z
− ∂(p + cP )

∂x
+ P

∂c

∂x
, (2.29)

if 0 � Z � αh, where p + cP represents the total particle pressure. When the inertial
terms dU/dt and du/dt and the non-uniformity in the x direction vanish, and φ = θ ,
(2.26)–(2.29) reduce to (2.6) and (2.9).

Depth-averaging the longitudinal momentum balances (2.26)–(2.29), with
concentration constant and equal to ĉ, gives, for the fluid and the particles, respectively,

[β − 1 + α(1 − ĉ)]h
dUA

dt
=

β − 1 + α(1 − ĉ)

σ
h sinφ − ĉ

σ

∫ αh

0

C(U − u) dZ

+

∫ ξh

0

∂S

∂Z
dZ − (1 − ĉ)

∫ αh

0

∂P

∂x
dZ −

∫ βh

h

∂P

∂x
dZ (2.30)

and

ĉh
duA

dt
= ĉh sin φ +

ĉ

σ

∫ αh

0

C(U − u) dZ −
∫ h

0

2
μw

W
p dZ

+

∫ h

0

∂s

∂Z
dZ −

∫ h

0

∂p

∂x
dZ − ĉ

∫ αh

0

∂P

∂x
dZ, (2.31)
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where,

dUA

dt
≡ 1

[β − 1 + α(1 − ĉ)] h

[∫ βh

h

dU

dt
dZ + (1 − ĉ)

∫ αh

0

dU

dt
dZ

]
(2.32)

and

duA

dt
≡ 1

h

∫ h

0

du

dt
dZ. (2.33)

Equations (2.32) and (2.33) are formally derived in Appendix B.
We now make the fundamental assumption that the resistances due to the internal

shear stresses, the sidewalls and the drag force in (2.30) and (2.31) can be approximated
by the expressions valid when the flow is steady and uniform, that is, when they
balance only the component of the particle weight in the x direction:

ĉ

σ

∫ αh

0

C(U − u) dZ −
∫ ξh

0

∂S

∂Z
dZ =

1

σ
[β − 1 + α(1 − ĉ)] h sin Θ (2.34)

and

− ĉ

σ

∫ αh

0

C(U − u) dZ +

∫ h

0

2
μw

W
p dZ −

∫ h

0

∂s

∂Z
dZ = ĉh sin θ. (2.35)

The angles Θ and θ coincide with the inclination of the bed in a steady uniform
flow. However, in the steady non-uniform flow considered here, these three angles are
different: the inclination φ of the rigid bumpy bed is known, while Θ and θ can be
evaluated from the solutions for the steady uniform flows summarized in tables 1 and
2 using the local values of the non-uniform heights. That is, we specify uA and UA.
Then, as indicated at the end of the subsection on the slip velocity at the base, the
specification of uA, h and ξ results in a value of θ that, in general, is different from
φ. Similarly, the specification of UA results in an inclination Θ different from both φ

and θ . The angles agree if the depths of the fluid and particles become equal to their
uniform values.

The use of the resistance of a steady uniform flow in a higher order unsteady non-
uniform momentum equation is of common use in hydraulics (Chow 1959) and has
already been employed to describe the steady non-uniform motion of dry granular
flows (Pouliquen 1999a) and debris flows (Hungr 2000).

Using Leibniz’s rule, we may write the non-uniform terms in (2.30) and (2.31) as∫ αh

0

∂P

∂x
dZ =

∂

∂x

∫ αh

0

P dZ − P |Z=αh

∂(αh)

∂x
, (2.36)

∫ βh

h

∂P

∂x
dZ =

∂

∂x

∫ βh

h

P dZ + P |Z=h

∂h

∂x
(2.37)

and ∫ h

0

∂p

∂x
dZ =

∂

∂x

∫ h

0

p dZ, (2.38)

respectively. Equations (2.36)–(2.38) account for the vanishing of the fluid and particle
pressure at Z = βh and Z = h, respectively, and for the fact that the bed is a rigid
boundary (i.e. they describe the non-erosional non-depositional nature of the flow,
that is, no erodible bed is allowed to develop).

To close the problem, we require an expression for the distribution of the fluid and
particle pressure in the flow. Assuming that the length of the wave is much greater
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than its depth (the shallow-water assumption), we can obtain the distribution of P

and p in the Z direction by integrating (2.5) and (2.8), replacing θ by φ, and using
the boundary conditions P (H ) = 0 and p(h) = 0:

P =
1

σ
(H − Z) cos φ (2.39)

and

p = (h − Z)ĉ cos φ, (2.40)

if αh � Z � h, or

p = h(1 − α)ĉ cos φ + (αh − Z)(σ − 1)ĉ cosφ/σ, (2.41)

if 0 � Z � αh. Then, upon employing (2.39)–(2.41) in (2.36)–(2.38), we obtain

∂

∂x

∫ αh

0

P dZ − P |Z=αh

∂(αh)

∂x
=

αh

σ
cosφ

∂H

∂x
, (2.42)

∂

∂x

∫ βh

h

P dZ + P |Z=h

∂h

∂x
=

βh − h

σ
cos φ

∂H

∂x
(2.43)

and

∂

∂x

∫ h

0

p dZ = h
(
1 − α2/σ

)1/2
ĉ cos φ

∂

∂x

[
h

(
1 − α2/σ

)1/2
]
. (2.44)

The steady non-uniform flow, sometimes referred to as a uniform progressive wave,
is characterized by the fact that uA and UA are equal and independent of x (Hungr
2000). This implies dUA/dt = duA/dt = 0 and, using (2.34)–(2.38) and (2.42)–(2.44),
(2.30) and (2.31) reduce to

dH

dx
= tan φ − sinΘ

cos φ
(2.45)

and (
1 − α

σ

) dh

dx
+

α

σ

d(βh)

dx
= tan φ − sin θ

cos φ
. (2.46)

Equations (2.45) and (2.46) can be further simplified if we assume that the angles φ,
θ and Θ are small:

dH

dx
= tan φ − tan Θ (2.47)

and (
1 − α

σ

) dh

dx
+

α

σ

d(βh)

dx
= tan φ − tan θ. (2.48)

Solutions of the two ordinary differential equations (2.47) and (2.48) provide the
evolution of depths h(x) and H (x), when both particles and fluid are present,
x <min(x∗, X∗), once the value of the angle of inclination of the rigid bumpy bed φ,
the common value of the average velocities uA = UA and two boundary conditions are
specified. The two boundary conditions are the values of h and H at x = min(x∗, X∗).
In the following subsection we show how we set these boundary conditions.

2.6. Wave front

The natural boundary conditions at the snouts are the vanishing of the particle and
fluid depths, that is, h(x∗) = 0 and H (X∗) = 0. This poses a problem, because we are
using the results of a theory on steady uniform flows to approximate the resistances
in a non-uniform situation; we have already emphasized that the theory does not
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apply when the flow is thin. In addition, near the snouts, the inertial terms in the
normal momentum balances are not negligible, so that the shallow-water assumption
also fails (the distribution of pressures is not hydrostatic) and (2.47) and (2.48) do
not provide a faithful description of the phenomenon. Nonetheless, we accept these
drawbacks as part of the approximations of the theory and describe the snouts in
the context of the model (cf. Hunt 1984, 1994). In the following, we consider, for
simplicity, situations in which the influence of the sidewalls is negligible (i.e. μw = 0),
as in the experiments performed by Davies (1988) (see the next section). The extension
to situations in which sidewalls are present is straightforward.

In general, x∗ is different from X∗, so that the front of the wave could be either a
clear fluid (x∗ < X∗) or dry (x∗ > X∗). Davies’ careful qualitative description of his
experiments (Davies 1988) refers to steady waves with a dry front. Consequently, we
limit our analysis to this case.

If the front is dry, then, for X∗ � x � x∗, H = 0; while h evolves according to

dh

dx
= tan φ − tan θ. (2.49)

In this simple case, we can obtain tan θ as an explicit function of uA and h from the
solution for a steady uniform dry flow. Using (2.19) and (2.21), with uψ = uA, ψ = h,
up = ub, σ = ∞, cos θ ≈ 1 and μb = μ = tan θ (from 2.16, with μw = 0),

tan θ = μ̌ + χ
uA

(2h/5 + 1)h1/2
. (2.50)

Equation (2.49) implies that, for a dry front, dh/dx must be negative at x = x∗, where
h = 0. Given that the stress ratio is constant and equal to tan θ and that we can
have a dense flow when μ̌ � μ � μ̂, this condition constrains the angle of inclination
of the rigid bed (μ̌ � tan φ � μ̂). It implies that it is not possible to have a steady
wave with a dry granular front, if the angle of inclination of the rigid bed is less than
the angle of repose of the granular material (about 22◦ for the plastic cylinders used
by Armanini et al. 2005, as stated in the next section). Davies (1988) experiments
were performed at angles of inclination of the rigid bed less than 19◦ with somewhat
different particles than those employed by Armanini et al. (2005). The low values of
the angles of inclination may indicate that the extremely simplified rheology of the
boundary that we adopt is unrealistic. We note that in Davies’ experiments (Davies
1988), the dense granular-fluid flow developed over a thin collisional basal layer, so
that a more detailed analysis of the boundary, for example, that performed by Jenkins
& Askari (1999), might be more suitable.

Equation (2.49) with (2.50) can be easily integrated for X∗ � x � x∗. The value of
h = h∗ at x = X∗ can then be used as a boundary condition, together with H (X∗) = 0,
to solve (2.47) and (2.48). We use tan Θ = μ̌ + χ(UA − δu)h∗−1/2 for H (X∗) = 0 in
(2.47), from (2.21), with μb = tan Θ and ub = UA − δu, where δu is a function of the
square root of tan Θ (equation (2.14), replacing θ by Θ in the expression for �, with
S ′ = 0).

The control parameters in the problem are the inclination φ of the rigid bumpy bed,
the common value of the average velocities uA = UA (necessary, together with H and
h, to evaluate tan θ and tan Θ at every step of the integration) and the positions x∗

and X∗ of the snouts. Equivalently, the latter two control parameters can be replaced
by

V =

∫ X∗

0

[β − 1 + α(1 − ĉ)] h dx (2.51)
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and

v = ĉ

∫ x∗

0

h dx; (2.52)

these are, respectively, the total volume per unit width of the fluid and particles
contained in the wave between its snout and the origin of the x-axis.

In the following section, we provide the results of the theoretical treatment outlined
above and test the predictions of the theory against existing experiments.

3. Applications
3.1. Steady uniform flow

Here, we present features of the analytical solutions for a mixture of water (ρ =
1000 kg m−3 and η = 10−3 Pa·s) and plastic cylinders (σ = 1.54 and equivalent spherical
diameter d =0.0037 m). These particles have been used by Armanini et al. (2005) and
Larcher et al. (2007) to investigate steady fully developed particle-fluid flows over
both rigid and erodible beds. Previously (Berzi & Jenkins 2008a ,b), we indicated
the capability of the present theory to reproduce the experiments of Armanini et al.
(2005) for the flows over an erodible bed. We employ here the same values of
the coefficients in the particle rheology and the wall friction: μ̌ = 0.41, χ = 0.5,
ĉ =0.69, b = 0.3 and μw = 0.27. We also assume that dense flows of these non-
spherical particles take place within the concentration range 0.55–0.69; the lowest
value of concentration implies μ̂ = 0.64. We provide the value of b even though in
our approximate solution we will not make use of (2.2) to solve for the concentration
distribution.

Quantitative comparisons are also made with the experiments on dry granular flows
of glass spheres (d = 0.005 m) over a rigid bed without sidewalls by Pouliquen (1999b)
and over an erodible bed between sidewalls made of glass by Jop et al. (2005), and
with the experiments on the steady uniform flow of a mixture of water and glass
spheres (σ = 2.60 and d = 0.003 m) over an erodible bed between sidewalls made of
polycarbonate by Tubino & Lanzoni (1993). For glass spheres we use μ̌ = 0.38 and
μ̂ =0.64 (as suggested by Pouliquen 1999b), χ =0.6, ĉ = 0.6 and μw = 0.22.

When the flow is not dry, we solve for the flow behaviour by changing the particle
flux while keeping the fluid flux constant. This, at least in principle, can be done in the
physical experiments. Because of the implicit nature of the expressions reported on in
tables 1 and 2, we first set the degree of saturation ξ ≡ H/h, on which the coefficients
α and β depend; then, through an iterative process implemented in MATLAB using
the built-in function FZERO, we find the value of h that satisfies the condition on the
fluid flux. With ξ and h, all of the other quantities can be obtained explicitly using the
relations provided in tables 1 and 2. As previously stated, the value of tan θ coincides
with the slope of the bed for flow over a rigid bed, while is a function of h for flows
over an erodible bed (obtained by replacing h and μ̌ by z and μ, respectively, in the
first expression of table 1).

First, we make quantitative comparisons with existing experimental data to assess
the validity of the present theory for different flow configurations. Then, we carry
out a careful analysis of the capability of the present theory to explain key features
observed in steady uniform granular-fluid flows and make some predictions that will
have to be tested in experiments.

In figure 3, we show the comparisons between the results of the present theory and
experiments performed on dry granular flows of glass spheres. Figure 3(a) depicts
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Figure 3. (a) Theoretical (lines) and experimental (symbols) particle average velocity versus
depth for dry granular flow (Q = 0) of glass spheres over a rigid bumpy bed, without sidewalls,
when θ = 22◦ (solid line and circles), θ = 25◦ (dashed line and squares) and θ =28◦ (dot-dashed
line and triangles). (b) Theoretical (lines) and experimental (symbols) angle of inclination of
the free surface versus particle volume flux for dry granular flow (Q =0) of glass spheres over
an erodible bed between frictional sidewalls when W = 283 (solid line and circles), W = 57
(dashed line and squares) and W = 19 (dot-dashed line and triangles).

the average particle velocity versus the particle depth for the flow on an incline in
absence of sidewalls. In this case, (2.16) implies that μ is constant in the flow and
equal to tan θ . Here, only the experimental results of Pouliquen (1999b) for angles
of inclination of his rigid bumpy bed equal to 22◦, 25◦ and 28◦ are reported. The
theory fits the experimental results very well, except for the mildest slope, where
the latter are underestimated. This is probably due to the approximation that we
make in the rheology for the value of the inertial parameter when μ = μ̌. As already
stated, we take I = 0 there, while it should be greater than zero. This results in an
underestimation of the shear rate and, therefore, of the velocity, when μ = tan θ is
close to μ̌ (for glass spheres, this is for values of θ close to 21◦). Figure 3(b) shows the
predictions of the theory against the experimental results for the dry granular flow
of the same glass spheres used by Pouliquen (1999b) over the top of a heap when
frictional sidewalls made of glass are present (Jop et al. 2005). Once again, the angle
of inclination of the free surface versus the particle volume flux is well predicted by
the theory, for different values of the distance between the sidewalls.

In figure 4, we provide quantitative comparisons of the theory with experiments
performed on steady uniform flows of particles and water. Figure 4(a) shows the
angle of inclination of the free surface as a function of the particle volume flux
for a flow of glass spheres in water over an erodible bed. The experiments were
performed by Tubino & Lanzoni (1993) in a channel of width W =67 and sidewalls
made of polycarbonate. The range of Q investigated in these experiments has been
deduced from the experimental values of mean concentration c̄ and particle flux
through the relation Q = q(1 − c̄)/c̄, suggested by the authors; this relation should
hold approximately when h and H are close and the difference between the particle
and the fluid velocity is small. The calculated values of Q are in the range 16–
41. The average value, Q =29, has been employed to obtain the theoretical results
of figure 4(a). Analytical solutions for both the small- and large-scale turbulence
approximation are shown in figure 4(a). For the value of Q and for particles as heavy
as glass spheres, the only appreciable effect of the turbulence expression is to change
the minimum value of q for which the flow can still be considered to be dense (when
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Figure 4. (a) Experimental (circles) angle of inclination of the free surface versus particle
volume flux for flows of glass spheres and water over an erodible bed between frictional
sidewalls (W = 67) with Q = 29 and the theoretical predictions using the small-scale (dashed
line) and the large-scale (solid line) turbulence. (b) Theoretical (lines) and experimental
(symbols) particle depth versus particle volume flux for a flow of plastic cylinders and water
between frictional sidewalls (W = 54) over an erodible bed with Q = 8 (dot-dashed line and
circles), an erodible bed with Q = 17 (dashed line and squares), and a rigid bed of θ = 21◦ with
Q =32 (solid line and triangles). The dotted line represents the results of the present theory
for flows that can not be considered dense (μM > μ̂).

the small-scale turbulence approximation is used, this minimum value of q is around
30; while, for the large-scale turbulence approximation, q can be as small as 10).
It should be emphasized here that we have employed the same parameters in the
particle rheology and the same wall friction coefficient obtained from the fitting with
experiments performed on dry granular flows between glass sidewalls. No attempt has
been made to modify these parameters to take into account the possible influence of
the interstitial fluid or the fact that the sidewalls are made of polycarbonate instead
of glass; we leave this to future work. Despite this, and the fact that the most of
the experiments are in a range in which the flow cannot be considered dense, the
agreement is quite good.

In figure 4(b), the comparisons between the experiments performed on flows of
plastic cylinders and water over erodible and rigid beds by Armanini et al. (2005)
and Larcher et al. (2007) are depicted together with the predictions of the present
theory. The experimental data for the particle depth versus the particle volume flux
have been obtained from the distributions of velocity and concentration obtained
from optical measurements at the sidewall reported in Larcher et al. (2007). The
value of Q has been obtained, as in the experiments of figure 4(a), from the relation
Q = q(1 − c̄)/c̄. Five runs in the experimental campaign of Larcher et al. (2007) have
been found to have a value of Q around 7, while, in the other 5, Q ranges between
16 and 18. The values of Q used for obtaining the analytical solutions of figure 4(b)
are, therefore, 7 and 17, respectively. The agreement with the experiments is notable,
especially because the present theory is capable of reproducing a key feature of steady
uniform granular-fluid flows that no existing single-phase theory can: the existence
of a plateau for the particle volume flux, when the flow becomes under-saturated
(see later in this section). In figure 4(b), we show results of experiments performed
by Armanini et al. (2005) over a rigid bed, with θ = 19◦–23◦ and Q =25–39 and
compare this data with the predictions of the present theory for θ = 21◦ and Q =32.
Unfortunately, the minimum value of q that corresponds to the maximum value of the
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Figure 5. (a) Particle volume flux versus angle of inclination in a channel of width W = 100
for a dry granular flow (Q =0) over an erodible bed (solid line) and, with θ =25◦, over a rigid
bumpy bed (dotted line). (b) Particle volume flux versus depth in a channel of width W = 100
for a dry granular flow (Q = 0) over an erodible bed (solid line) and over a rigid bumpy bed
with θ = 25◦ (dotted line).

stress ratio for which the flow can still be considered to be dense is around 70; while
the experimental values are around 30. Nonetheless, if we use the present theory to
solve the problem for such small values of q (dotted line of figure 4b), the agreement
with the experiments is remarkable.

In the following, we show the predictions of the present theory for flows of water
and the plastic cylinders used by Armanini et al. (2005) for values of the control
parameters (q , Q, W , θ) not investigated by them. All the plots refer to solutions
of the approximate theory for which the flow can be considered dense; so that the
maximum value μM of the stress ratio in the flow is between μ̌ and μ̂.

In figure 5, we provide graphs of the tangent of the angle of inclination of the
free surface and the particle depth versus the particle volume flux for a channel
width of 100 diameters for zero fluid volume flux, that is, a dry granular flow. In
figure 5(a), we show the angle of inclination versus the particle volume flux for the
flow over an erodible bed, together with the curve for the flow over a rigid bed at an
angle of inclination of 25◦. The value of the particle volume flux at the intersection
between the two curves separates the space of the particle volume fluxes in two
regions. When the particle flux q is less than this value, both a flow over a rigid
bumpy bed and a flow over an erodible bed are possible at the same volume flux. In
this case, as shown in figure 5(b), the inclination of the erodible bed is less and the
thickness of the flow above it is greater than for the rigid bed. On the other hand, if
we increase the particle volume flux beyond the value at the intersection, flow over
a rigid bed becomes impossible; the flow develops an erodible bed at an angle of
inclination greater than that of the rigid bed. This is the flow configuration that has
been experimentally observed and modelled by Taberlet et al. (2003) and Jop et al.
(2005). Finally, we note that the particle flux over an erodible bed tends to zero as
tan θ tends to μ̌ (in this case, 0.41). In other words, in the context of the model, flow
over an erodible or a rigid bed is not possible if the angle of inclination of the bed is
less than μ̌.

In figure 6, we show the more complicated results of adding a fluid volume flux,
Q =50, to the situations depicted in figure 5. There is still a limiting value of particle
volume flux below which both a flow over a rigid bed and of a flow over an erodible
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Figure 6. (a) Same as in figure 5(a), but Q = 50. (b) Same as in figure 5(b), but Q = 50 and
the flow over a rigid bumpy bed is also shown for θ = 10◦ (dashed line).

bed, with the inclination of the latter less than that of the former, are possible. This
situation has been experimentally observed by Armanini et al. (2005) and Fraccarollo,
Larcher & Armanini (2007). Also, there is still a limiting value of the particle flux
beyond which only flow over an erodible bed is possible. Between these two limiting
values, the theory predicts a range of particle volume fluxes for which three solutions
are possible: two flows over a rigid bed and one over an erodible bed, with the
inclination of the latter greater than those of the former (figure 6b). In absence of
experimental evidence, we consider this as an artefact of our simplified treatment of
the rigid boundary.

Figure 6(a) also shows that the curve for the flow over an erodible bed is S-
shaped, with a nearly vertical plateau for a range of inclination angles (in this case,
0.2 < tan θ < 0.4). In this range, q is nearly constant and, given that Q is fixed, the
ratio q/(q + Q) is also constant. This feature has been observed in the experiments
of Armanini et al. (2005). Finally, in contrast with what we have observed for the
dry granular flow, the particle flux in figure 6(a) does not tend asymptotically to a
minimum as the angle of inclination is decreased. Indeed, by continuously decreasing
the particle volume flux, keeping the fluid volume flux constant, we would approach
the special case of a flow of a Newtonian fluid over an inclined surface. This flow
can be steady and fully developed as long as the inclination of the free surface
is not zero. Flows over a rigid bed with inclinations as small as 10◦, that is, for
tan θ much less than μ̌, are, therefore, possible (figure 6b). In figure 7 we plot the
predicted value of the maximum stress ratio in the flow against the particle volume
flux and the degree of saturation for the granular-fluid flow over an erodible bed
of figure 6. For a flow with a given Q to be considered dense (μM � μ̂), q cannot
exceed a maximum that corresponds to the minimum of the degree of saturation and
cannot be less than a minimum that corresponds to the maximum in the degree of
saturation.

An interesting feature of dry granular flows over an erodible bed between flat
sidewalls has been highlighted by Jop et al. (2005). When the particle volume flux
per unit width is scaled with the 5/2 power of the channel width, the experimental
data of volume flux versus angle of inclination collapse onto a single curve. The
theory outlined here is in agreement with this experimental observation. Indeed, if we
substitute (2.17) in (2.19), with up =0, we obtain the following universal relation for
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Figure 7. (a) Maximum value of the stress ratio in the flow versus particle volume flux in a
channel of width W = 100 for a granular-fluid flow (Q = 50) over an erodible bed. (b) Same as
in figure 7(a), but maximum stress ratio versus degree of saturation.
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Figure 8. (a) Scaled particle volume flux over an erodible bed versus angle of inclination
for W = 20 (dotted line), W =50 (dot-dashed line) and W = 100 (dashed line), with
Q/W 5/2 = 5 × 10−4. (b) Scaled particle volume flux over an erodible bed versus angle of
inclination for W = 100, with Q/W 5/2 = 5×10−4 (dashed line), Q/W 5/2 = 5×10−3 (dot-dashed
line) and Q/W 5/2 = 5×10−2 (dotted line). In both figures, the solid line represents the universal
relation (3.1) for dry granular flows.

dry granular flows:

q

W 5/2
=

4ĉ

35χμ
5/2
w

(cos θ)1/2 (tan θ − μ̌)7/2 . (3.1)

In order to see whether this scaling applies also to granular-fluid mixtures, we set
the value of Q/W 5/2 = 5 × 10−4 and, in figure 8(a), plot the relation between tan θ

and q/W 5/2 obtained from the analytical expressions for flow over an erodible bed
for channel widths of 20, 50 and 100 diameters, respectively. In the same figure, the
relation (3.1) for dry granular flows is also shown. The scaling found by Jop et al.
(2005) seems to apply to the granular-fluid mixture in the wider channels. When
W = 20, the scaling breaks down in the plateau region. Instead of a plateau, there is
a range of inclination angles for which multiple solutions to the flow over an erodible
bed are possible. These involve three values of tan θ for a given particle volume flux.
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Figure 9. (a) Scaled particle average velocity against degree of saturation in a flow over an
erodible bed for W = 20 and Q/W 5/2 = 5×10−4 (solid line), W = 100 and Q/W 5/2 = 5×10−4

(dashed line), W = 100 and Q/W 5/2 = 5 × 10−3 (dot-dashed line), and for W = 100 and
Q/W 5/2 = 5 × 10−2 (dotted line). (b) Same as in figure 9(a), but scaled particle depth versus
degree of saturation.

It would be interesting to see whether such solutions are stable and whether they can
be experimentally observed.

Figure 8(a) also shows that, as expected, when the particle volume flux is much
greater than the fluid volume flux, the relation between particle volume flux and angle
of inclination collapses onto the dry granular flow curve.

As shown in figure 8(b), the transition to the dry granular flow curve takes place
at higher values of tan θ as the scaled fluid volume flux is increased. Moreover, the
plateau tends to vanish with increasing fluid volume flux. To explain this behaviour,
we plot, in figure 9(a), the scaled particle average velocity uA/W 3/2 against the degree
of saturation ξ and, in figure 9(b), the scaled depth h/W against ξ , for the three
different fluid volume fluxes of figure 8(b). Except for the case Q/W 5/2 = 5 × 10−2,
there is a range of under-saturated flows (ξ � 1) where uA/W 3/2 is either constant or
decreasing as ξ decreases, while h/W is always increasing as ξ decreases.

If saturated flows (ξ = 1) are possible for tan θ < μ̌, there is a range of angle
of inclination for which ξ < 1, the depth ψ of the dry shear layer is zero and the
plug extends between 0 and ζ . In this range, for channels that are not narrow, the
decrease in the mean velocity, if present, is compensated for by the increase in the
particle depth, and the particle volume flux is approximately constant. If, instead, the
channel is narrow, the decrease in mean velocity is more important than the increase
in particle depth, and the particle volume flux decreases as tan θ increases (figure 8a).
When tan θ > μ̌, as we have shown in the previous section, the upper part of the
surface dry granular layer of thickness ψ is sheared. This additional contribution to
the mean velocity uA/W 3/2 causes an increasing of the particle volume flux as tan θ

increases. If the condition ξ = 1 applies for tan θ > μ̌, as for Q/W 5/2 = 5 × 10−2,
the entire upper dry layer is sheared, no plug develops in the flow and the plateau
vanishes.

3.2. Steady non-uniform flow

Here, we present the results for the steady non-uniform flow of a mixture of water
and the plastic cylinders used by Armanini et al. (2005) and described in the previous
subsection. This allows us to employ the same values for the particle properties.
Although such particles have not been used to perform experiments in steady
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non-uniform condition, quite similar particles (plastic cylinders of specific weight
σ = 1.4 and equivalent spherical diameter d = 0.0046 m) have been employed, as
already mentioned, with water as interstitial fluid, by Davies (1988) in a moving-bed
apparatus. Consequently, we expect that the theory will be able to provide predictions
in, at least, qualitative agreement with the experiments.

The moving-bed apparatus of Davies (1988) was a rectangular flume 50 mm in
width and 2 m in length, with its ends closed to retain both the fluid and the granular
material. The channel bed was a corrugated nylon belt, driven by a system of rollers
and moving at a controlled constant velocity. In the experiments, the belt velocity,
the inclination of the channel and the volumes of fluid and particles retained in
granular-fluid mixture were the control parameters. As explained by Davies (1988),
fixing the belt velocity in the apparatus was equivalent to fixing the average velocities
uA = UA of the flow in the laboratory frame of reference (figure 2). Setting the origin
of the x-axis in figure 2 at the upward end of the flume and using the fluid and
particle volumes V and v of (2.51) and (2.52) as control parameters allows us to
mathematically mimic the experimental apparatus of Davies (1988). In the apparatus,
the mean velocity of the fluid and particles with respect to the sidewalls was zero.
As suggested by Davies (1988), this implies that the frictional force exerted by the
sidewalls on the particles was, on average, small. So, in this type of experimental
set-up, it is not possible to investigate the influence of the channel width W on the
flow. Consequently, the following predictions were obtained for W = ∞.

We employ a fourth-order Runge–Kutta method to solve the three differential
equations (2.47)–(2.49). In doing this, we adopt values of the control parameters,
in particular, the average velocity and bed inclination, close to those employed by
Davies (1988), but large enough to have a particle depth greater than 10 diameters
for the most of the flow (see the second paragraph of the previous subsection).

At each step in the Runga–Kutta method, we must evaluate the equilibrium angles
Θ and θ for the fluid and the particles. To do this for known values of h and H at a
given x, we evaluate ξ and, using the same iterative method employed for the steady
uniform flow introduced in the previous subsection, we find the slope, corresponding
to Θ or θ , that satisfies the condition on the average velocity for the fluid or the
particles, respectively. The relative position of the fluid and particle snouts (x∗ − X∗)
and the origin of the x-axis in figure 2 depend on the values of the fluid and particle
volumes, V and v. We tentatively set the relative position, x∗ − X∗, of the snouts and
integrate (2.45) and (2.46) upwards, starting from x = x∗ (or X∗, if it is downstream
from x∗). At each step, we evaluate the particle volume per unit width and stop when
it is sufficiently close to v. Then, we evaluate the fluid volume per unit width and, if
not sufficiently close to V , we perform the integration again with a different value of
x∗ − X∗.

Figure 10 shows the influence of the particle and fluid volumes on the wave. In
figure 10(a), we plot the particle and fluid depth as a function of position x for
different values of V , while keeping v = 8000, with φ = 30◦ and uA = UA = 10. For
V = 0, we have the results for a dry granular steady wave. The behaviour is similar to
that obtained by Pouliquen (1999a) experimentally for W = ∞ and modelled by him
using a different particle rheology from that employed here. The particle depth is zero
at the wavefront, then monotonically increases upwards, and tends, asymptotically,
to a value ĥ that is the depth of the steady uniform dry flow. When fluid is present
(V = 1500), the solution shows some distinctive features of debris flows observed
both in the laboratory (Davies 1988) and in nature (Takahashi 1991; Iverson 1997):
(i) there is a part of the wave close to the snout in which the flow is dry; (ii) the
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Figure 10. (a) Particle depth (black lines) and fluid depth (grey lines) versus position for a
granular-fluid wave over a rigid bumpy bed with φ = 30◦, uA = UA = 10, v = 8000 and
W = ∞, for V = 0 (dashed lines), V = 1500 (solid lines) and V = 3000 (dot-dashed lines). (b)
Particle depth versus position for a granular-fluid wave over a rigid bumpy bed with φ = 30◦,
uA = UA = 10, V = 1500 and W = ∞, for v = 6000 (dashed line), v = 8000 (solid line) and
v = 10000 (dot-dashed line). The fluid depth versus position, independent of the total particle
volume v, is represented by the grey solid line.

wave exhibits a bulge at the front, with a maximum depth at about x = X∗ and (iii)
moving upslope, both h and H tend to asymptotic values h0 and H0 which are the
solutions for the steady uniform flow. Figure 10(a) clearly shows that the bulging
of the wave is a consequence of ĥ, to which the dry granular front tends, being, in
this case, greater than h0. If more fluid is added (V = 3000), both x∗ − X∗ and the
maximum depth of the bulge decrease.

In figure 10(b), we plot the particle and fluid depth as a function of position x for
different values of v, while keeping V constant, with φ = 30◦ and uA = UA = 10.
The shapes are consistent with the observation made by Davies (1988) that the wave
presents a front (head) in which the particle depth is increasing upslope, a body
characterized by a constant depth, and a tail where the depth diminishes. Increasing
the particle volume causes the length of the body to increase, without substantially
affecting the shape of the front or the tail.

Finally, figure 11 shows the influence of the average velocity and bed inclination
on the wave. Increasing the average velocity uA = UA causes an increase in h0 relative
to ĥ (figure 11a). Therefore, for a certain value of uA, in this case 13, h0 ≈ ĥ, and
the bulge disappears. For uA greater than this value, h0 > ĥ, and the granular-fluid
wave depth is monotonically increasing upslope, tending to an asymptotic value, as in
the case of the uniformly progressive wave of a single-phase fluid (Hungr 2000). The
fact that a bulbous granular-fluid wave is not always present was actually noticed by
Davies (1988); here, we provide a rational explanation for this in the context of a
simple approximate theory. Figure 11(b) shows the effect of the bed inclination: the
maximum depth of the wave increases if the bed inclination decreases, while x∗ − X∗

diminishes (as already stated, no dry granular front is possible, if tan φ < μ̌).

4. Concluding remarks
In the present work, we completed the approximate analytical solutions (Berzi &

Jenkins 2008a ,b) for steady uniform flows of gravity-driven granular-fluid mixtures,
with or without frictional sidewalls, by extending them to situations in which the angle
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Figure 11. (a) Particle depth (black lines) and fluid depth (grey lines) versus position for a
granular-fluid wave over a rigid bumpy bed with φ = 30◦, v = 8000, V = 1500 and W = ∞, for
uA = UA = 10 (solid lines), uA = UA = 13 (dashed lines) and uA = UA = 16 (dot-dashed lines).
(b) Particle depth (black lines) and fluid depth (grey lines) versus position for a granular-fluid
wave over a rigid bumpy bed with uA = UA = 10, v = 8000, V = 1500 and W = ∞, for
φ = 20◦ (dot-dashed lines), φ = 25◦ (dashed lines) and φ = 30◦ (solid lines).

of inclination of the free surface is greater than the angle of repose of the solid material
and to flows over a rigid bumpy bed. We then employed the analytical relations
between particle and fluid average velocities, particle and fluid depths and angle of
inclination of the free surface to solve for the steady motion of a long granular-fluid
wave over a rigid bumpy bed. Using a linear rheology with parameters that were
previously evaluated through fitting with experiments (Berzi & Jenkins 2008a ,b), we
compared the predictions of the theory with existing experiments for steady, flows of
water and plastic cylinders. We also made comparisons with experiments performed
on steady, flows of glass spheres, with and without water, in many flow configurations.

Our theory reproduces many distinctive features of steady uniform flows: (i) when
frictional sidewalls are present, beyond a certain particle volume flux, the granular-
fluid flow always develops an erodible bed at an angle of inclination greater than
the rigid bed below, a phenomenon that has been observed by Taberlet et al. (2003);
(ii) below this particular value of particle volume flux, it is possible for the mixture
to flow either over a rigid or an erodible bed, with the inclination of the latter less
than that of the former, as experimentally observed by Armanini et al. (2005) and
(iii) if the fluid volume flux is not too high, an under-saturated granular-fluid mixture
flowing over an erodible bed is characterized by an almost constant ratio between
particle volume flux and total volume flux over a wide range of angles of inclination,
as noted by Armanini et al. (2005).

The theory also allowed us to qualitatively reproduce the experimental results on
steady non-uniform granular-fluid flows over a rigid bumpy bed performed by Davies
(1988), using a moving-bed apparatus. For a certain range of angles of inclination
of the rigid bed and average velocities of both fluid and particles, if the amount of
particles is sufficiently large in comparison with that of fluid, then (i) the wave has
a bulbous shape, with a dry granular front, a body of constant depth and a tail
which is slightly under-saturated; (ii) an increase in the amount of particles causes
the length of the body to increase without substantially affecting either the front or
the tail and (iii) increases in the average velocity of fluid and particles eventually lead
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to the vanishing of the bulge, so that the granular-fluid wave depth is monotonically
increasing upslope, as is the case for a single-phase fluid.

The approximate theory is based on the fundamental assumption that the depth of
the dense flow is sufficiently large (e.g. at least 10 diameters thick) to disregard the
influence of boundaries on the energy balance of the particles. This leads to algebraic
relations between the particle stress ratio, inertial parameter and concentration; that
is, a ‘local rheology’ for the particles. Also, for the local rheology to be approximately
linear, most of the flow must be dense. Despite these drawbacks, the relative simplicity
of the theory and the good qualitative and quantitative agreement of its predictions
with experiments on steady flows, even well beyond its expected range of applicability,
seem promising with respect to its practical applications in the field of civil engineering.

We are grateful to Professor E. Larcan for his continued interest in this work.
J. T. Jenkins acknowledges financial support from the Region of Lombardia and
the hospitality of the Section of Hydraulics of the D.I.I.A.R. Department at the
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Appendix A
In order to derive the analytical solution for a steady, uniform flow of a gravity-

driven granular-fluid mixture when no sidewalls are present, we use the assumptions
of constant concentration (c = ĉ) and similarity of the velocity profiles (u′ = U ′).
First, we employ the drag force (2.7) in the particle flow momentum balance (2.9),
in which we set μw = 0. Upon integrating, we obtain the distribution of the particle
shear stress

s = s∗ [ĉ + (1 − ĉ)/σ ] [z − h (1 − α)] sin θ − S + S∗, (A 1)

where s∗ and S∗ are, respectively, the particle and fluid shear stresses at z = h(1 − α):

s∗ = h(1 − α)ĉ sin θ (A 2)

and

S∗ = h(β − 1) sin θ/σ. (A 3)

Similarly, we integrate (2.8) to obtain the distribution of the particle pressure:

p = {z − [z − h(1 − α)] /σ} ĉ cos θ. (A 4)

With the approximation (2.10) or (2.11) for the fluid shear stress, the ratio of particle
shear stress and pressure is, from (A 1) and (A 4) and the condition u′ = U ′,

μ =
z + (1 − ĉ) [z − h(1 − α)] /(ĉσ )

z − [z − h(1 − α)] /σ
tan θ − D2I 2

+
S∗

{z − [z − h(1 − α)] /σ} ĉ cos θ
. (A 5)

With the linear rheology (2.1), we rewrite (A 5) as

DI 2 + χI +
χ2

4D
− 2Fz + N

z + L
= 0. (A 6)

Upon taking I = 0 in (A 6), we may determine the value z = ζ (the base of the plug)
for which μ = μ̌ reported in table 2.
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The quadratic (A 6) may be solved for I and integrated with the boundary condition
u(h) = ub to obtain the particle velocity profile:

u = ub − χ[(1 − 1/σ ) cos θ]1/2
[
(h + L)3/2 − (z + L)3/2

]
/(3D)

− [(1 − 1/σ ) cos θ]1/2
[
(2Fz + N)3/2 − (2Fh + N)3/2

]
/
(
3FD1/2

)
. (A 7)

Integrating again between ζ and h, we obtain the mean value um of the particle
velocity in the flow layer reported in table 2. In the upper plug layer, ψ � z � ζ ,
the particle velocity up is constant and equal, for continuity, to u(ζ ). Given that μw

is zero, the upper dry layer in an under-saturated flow is either totally sheared if
tan θ > μ̌ or not sheared at all if tan θ � μ̌, so that ψ has the expression reported in
table 2.

Finally, the distribution of μ with z and, consequently, also its value μb at z = h,
reported in table 2, can be obtained by substituting the linear rheology (2.1) in (A 6).

Appendix B
Here we provide only the derivation of the average inertial term for the fluid. The

derivation for the average inertial term for the particles is straightforward.
We first use the Leibniz’s rule, to obtain

1

σ

∫ βh

h

dU

dt
dZ +

1 − ĉ

σ

∫ αh

0

dU

dt
dZ =

1
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∂

∂t

[∫ βh

h
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0

U dZ

]
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1
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∂(βh)

∂t
+ U (βh)

∂(βh)

∂x
− Uz(βh)

]

− 1 − ĉ

σ
U (αh)

[
∂(αh)

∂t
+ U (αh)

∂(αh)

∂x
− Uz(αh)

]

+
1

σ
U (h)

[
∂h

∂t
+ U (h+)

∂h

∂x
− Uz(h

+)

]
, (B 1)

where Uz is the fluid velocity in the Z direction and the index + indicates that the
quantity is evaluated by approaching Z = h from above. In (B 1) we have made use
of the incompressibility of the fluid and the rigidity of the bottom (Z = 0) boundary.

For over-saturated flows (α = 1), Z = βh is a material boundary for the fluid;
hence ∂(βh)/∂t +U (βh)∂(βh)/∂x −Uz(βh) = 0, U (αh) = U (h−) and Uz(αh) = Uz(h

−).
If we apply the fluid mass balance to a pillbox on the interface at Z = h, we obtain
the jump condition:

∂h

∂t
+ U (h+)

∂h

∂x
− Uz(h

+) − (1 − ĉ)

[
∂h

∂t
+ U (h−)

∂h

∂x
− Uz(h

−)

]
. (B 2)

Therefore, the last three terms in (B 1) vanish. The same holds for under-saturated
flows (β = 1), because, in this case, U (βh) = U (h+), Uz(βh) = Uz(h

+) and Z = αh

is a material boundary for the fluid; hence ∂(αh)/∂t + U (αh)∂(αh)/∂x − Uz(αh) = 0.
Using the definition of average velocity UA given in (2.25), we may write (B 1) as
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1

σ

∫ βh

h

dU

dt
dZ +

1 − ĉ

σ

∫ αh

0

dU

dt
dZ =

1

σ

∂

∂t
{UAh [β − 1 + α(1 − ĉ)]}

+
1

σ

∂

∂x

{
U 2

Ah [β − 1 + α(1 − ĉ)]
}

. (B 3)

This holds only approximately, because we have assumed the trivial correlation:∫ βh

h

U 2 dZ + (1 − ĉ)

∫ αh

0

U 2 dZ

U 2
Ah [β − 1 + α(1 − ĉ)]

= 1. (B 4)

Actually, this ratio is in the range 1–1.5 for a steady, uniform flow (using the analytical
solution provided in table 1 or 2), so we do not expect this approximation has a great
influence on the solution for a steady, non-uniform flow. Finally, using the fluid mass
balance,

∂ {h [β − 1 + α(1 − ĉ)]}
∂t

+
∂ {UAh [β − 1 + α(1 − ĉ)]}

∂x
= 0, (B 5)

in (B 3), we obtain (2.32).
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